Analytic Number Theory
Instructor: Ranjan Bera
M. Math End Semester Exam(2022). Maximum marks: 50

Time: 3 Hours
Answer the following questions.

1. Find all integers n such that $\phi(n)=16$. Prove that

$$
\frac{n}{\phi(n)}=\sum_{d \mid n} \frac{\mu^{2}(d)}{\phi(d)}
$$

2. Find the Dirichlet characters for $k=9$. Give an example of a Dirichlet character $f \bmod k$ for which k is not the smallest positive period of f.
3. Define primitive character mod k. Prove that there exists no real primitive character $\chi \bmod k$ if $k=2 m$, where m is odd.
4. Prove that the conductor of χ divides every induced modulus for χ. If n and k are integers, $n>0$, let $G(k ; n)=\sum_{r=1}^{n} e^{2 \pi i k r^{2} / n}$, prove that $G(k ; m n)=$ $G(k m ; n) G(k n ; m)$ whenever $(m, n)=1$.
5. State and prove law of Quadratic reciprocity, for odd primes.
6. If P is an odd positive integer, Prove that

$$
(-1 \mid P)=(-1)^{(P-1) / 2}
$$

and

$$
(2 \mid P)=(-1)^{\left(P^{2}-1\right) / 8}
$$

Determine whether -104 is a quadratic residue or non residue of the prime 997.
7. Let g be a primitive root $\bmod p$, where p is an odd prime, then prove that either g or $g+p$ is a primitive root $\bmod p^{e}$ for all $e \geq 2$.
8. Show that the zeros of Riemann's Xi-function $\xi(s)$ (if any exist) are all situated in the strip $0 \leq \Re(s) \leq 1$ and lie symmetrically about the lines $t=0$ and $\Re(s)=1 / 2$.
9. Prove that the Diophantine equation

$$
y^{2}=x^{3}+k
$$

has no solutions if k has the form

$$
k=(4 n-1)^{3}-4 m^{2}
$$

where m and n are integers such that no prime $p \equiv-1(\bmod 4)$ divides m
10. Prove that the Bernoulli polynomials satisfy the relations $B_{n}(1-x)=$ $(-1)^{n} B_{n}(x)$ and $B_{2 n+1}(1 / 2)=0$ for every $n \geq 0$.

